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Abstract. With the widespread adoption of smart wearable devices,
embedded Micro-Electro-Mechanical Systems (MEMS) have become a
key research area in gesture recognition. Compared to vision-based ap-
proaches, MEMS-based recognition offers advantages such as a simple
structure, long-term monitoring, and easy integration, showing great po-
tential for real-world applications. Traditional MEMS gesture recogni-
tion methods rely on handcrafted features, while multimodal sensors like
accelerometers and gyroscopes generate heterogeneous data, requiring
advanced fusion strategies. To address this, we propose DS-CAN, a data
fusion framework integrating contrastive and deep learning. The model
employs dual independent encoding channels to process accelerometer
and gyroscope data, followed by a multi-head attention mechanism to
focus on features like time alignment, amplitude correlation, and mo-
tion direction consistency. The contrastive loss function, enhanced with
a temperature parameter τ , extends traditional unimodal contrastive
learning to multimodal scenarios, promoting feature association and dis-
tinction. Experimental results show that DS-CAN achieves around 94%
accuracy on the 6DMG (20 gestures) and MGD (12 gestures) datasets,
outperforming models like CNNs, LSTMs, and two-stream CNNs. Cross
validation and additional experiments on posture datasets validate the
model’s robustness and generalization ability. This method offers an ef-
ficient solution for gesture recognition in wearable devices and demon-
strates practical value in human-computer interaction.

Keywords: Gesture Recognition · Deep Learning · Contrastive Learn-
ing · Data Fusion · Multi-Head Attention.

1 Introduction

Vision-based gesture recognition systems have made significant progress in fields
such as human–computer interaction and intelligent surveillance due to their
intuitive ability to process image information. These methods capture gesture
images through cameras and extract spatial features using models such as Con-
volutional Neural Networks (CNNs), enabling effective classification of static
gestures and dynamic movements. However, their practical application is lim-
ited by sensitivity to occlusion, variations in lighting, and privacy concerns [1].
The rapid development of wearable technology has spurred research on ges-
ture recognition based on Micro-Electro-Mechanical Systems (MEMS) sensors,
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demonstrating broad application prospects in areas such as smart healthcare
and human–computer interaction [2]. Compared with traditional vision-based
approaches, MEMS sensors offer advantages such as simple structure, strong
environmental robustness, and easy integration into compact devices. Modern
accelerometers use advanced capacitive sensing principles to detect multi-axis
inertial forces, achieving ultra-low power consumption while maintaining sub-
milli-g resolution [3]. These sensors can faithfully capture both static gravita-
tional components and dynamic motion features, providing rich representations
for gesture modeling [4]. When combined with MEMS gyroscopes that measure
angular velocity [5], this multimodal sensor fusion enables the construction of a
comprehensive motion profile necessary to distinguish subtle gesture variations.

Despite the significant advantages of MEMS-based approaches, current sensor-
based gesture recognition systems still face several key challenges:

1. Inefficient multimodal data fusion: Accelerometers and gyroscopes rep-
resent linear and rotational motion, respectively. Traditional methods adopt
early or late fusion strategies but fail to dynamically capture the critical
contributions of each modality across different gestures.

2. Insufficient capability for feature clustering and separation: When
user-specific variations in gesture execution are large, conventional contrastive
loss functions struggle to ensure that multimodal features of the same gesture
are effectively clustered while features of different gestures are sufficiently
separated. This impairs the model’s ability to distinguish between various
gesture classes.

3. Challenges in lightweight real-time deployment: Due to their complex
architectures, existing models often involve a large number of parameters and
high computational cost, making them unsuitable for resource-constrained
edge devices such as smart wristbands and AR glasses.

Traditionally, approaches based on Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM) networks [6] have struggled to simul-
taneously address the above challenges, primarily due to their limited capacity
for modeling cross-modal interactions and temporal attention mechanisms. To
overcome these limitations, this study proposes a novel contrastive accelerom-
eter–gyroscope embedding framework that integrates deep learning and con-
trastive learning strategies. The proposed architecture innovatively incorporates
three key components:

1. Attention-guided multimodal sensor fusion: A multi-head attention
mechanism is introduced to dynamically calibrate the weights of cross-modal
features, enabling adaptive modeling of each sensor’s contribution within
different gestures.

2. Robust contrastive learning framework: Cross-modal positive and neg-
ative sample pairs are constructed, and the NT-Xent loss is employed to en-
force alignment of accelerometer and gyroscope features in the latent space
for the same gesture, while enlarging the distance between features of differ-
ent gestures. This effectively mitigates disturbances such as sensor orienta-



Gesture Recognition from Sensors Using Dual-path Encoding and Attention 3

tion shifts and individual execution variances, enhancing feature invariance
and discriminability.

3. Lightweight architecture and compression optimization: A hierar-
chical feature extraction strategy is adopted to reduce parameter redun-
dancy. Combined with contrastive learning’s inherent feature compression
and structural regularization effects, the model achieves a parameter size of
only 3.9M and an inference latency of 10.3 ms without requiring additional
compression algorithms. This satisfies the real-time computation require-
ments of edge devices such as smartwatches and wearable bands, overcoming
the deployment bottlenecks of traditional deep learning models in resource-
constrained environments.

Comparative analysis with traditional CNN-LSTM hybrid models [7] and
other baseline architectures demonstrates the proposed model’s superiority in
both recognition accuracy and computational efficiency. The experimental re-
sults lay a solid foundation for advancing the next generation of human-centric
computing systems in healthcare, robotics, and intelligent environments [8, 9].

2 Related Works

2.1 MEMS sensor technology

Gesture recognition systems mainly consist of three core stages: MEMS sensors
capturing motion signals, data transmission, and classifier-based data catego-
rization. Early studies primarily used triaxial accelerometers; for instance, He
et al. [3] employed a threshold-based algorithm to achieve basic action recogni-
tion. With the widespread adoption of smartphones, smartwatches, and other
devices, the application scenarios for data acquisition have expanded. Kwon et
al. [1] leveraged these data to promote the use of Convolutional Neural Networks
(CNN) in wrist-worn gesture recognition. To further improve the performance
of machine learning models based on MEMS accelerometer sensors, lightweight
CNNs emerged, ensuring real-time capability while achieving high-accuracy ges-
ture recognition [6]. In addition, MEMS gyroscope sensors focus on capturing
angular velocity (rad/s), enabling sensitive detection of the rotational motion of
devices or frames [10]. As inertial sensors, MEMS gyroscopes have driven inno-
vative developments in the analysis of human rotational movements, and they
are widely applied in various fields such as consumer electronics, automotive
electronics, industrial automation, and aerospace.

2.2 Deep learning

Deep learning breakthroughs have significantly enhanced the performance of
computer vision tasks, driving their large-scale application in everyday scenar-
ios [11]. Currently, classification tasks such as gesture recognition and activ-
ity recognition have become research hotspots. MEMS sensors provide high-
precision signal acquisition and convenient data transmission capabilities, offer-
ing high-quality data sources for feature learning. For example, Xu et al. [12]
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proposed deformable CNNs to adapt to sensor displacement; Sun et al. [13] de-
signed lattice LSTMs to model complex temporal dependencies of IMUs; Koo et
al. [10] developed a contrastive learning framework to achieve cross-modal feature
embedding in low-label scenarios. Deep neural networks represented by CNNs
and LSTMs have achieved high-accuracy classification in gesture recognition by
mining spatiotemporal features of sensor data [6, 13, 14]. However, existing stud-
ies are mostly limited to isolated models or small datasets and lack systematic
comparisons with traditional machine learning methods [15–17], highlighting the
urgent need for more generalizable modeling frameworks.

The multi-head attention mechanism, as an innovative extension of self-
attention, has become a key to overcoming the representation bottleneck of tra-
ditional models [18]. This mechanism captures multi-scale features in sequences
in parallel, including both short-range and long-range dependencies, and dy-
namically allocates weights across different time steps, enabling the model to
simultaneously focus on multiple regions of the input sequence. For example, in
mixed accelerometer and gyroscope data, it can adaptively enhance key modal
signals and suppress redundant information based on gesture types [19]. This
“dynamic weighting — multi-domain focusing” characteristic endows the model
with stronger feature disentanglement and generalization capabilities, providing
a new approach for complex gesture classification.

2.3 Self-supervised Learning

Self-supervised learning (SSL) achieves feature learning by exploiting the in-
trinsic structure of unlabeled data, becoming a key technology to overcome the
annotation bottleneck in the field of gesture recognition. It designs pretext tasks
to mine the spatiotemporal continuity and multimodal correlations of sensor
data, thereby generating pseudo-supervision signals to learn meaningful motion
patterns [20]. Additionally, SSL enhances noise robustness through multi-sensor
invariance learning and has demonstrated performance close to that of super-
vised learning in fine-grained gesture classification tasks [21], [22]. As a core
branch of SSL, contrastive learning focuses on learning discriminative repre-
sentations through instance discrimination mechanisms. It generates multi-view
positive sample pairs via temporal augmentation methods and employs cross-
subject negative sampling strategies to increase the distance between hetero-
geneous features [23], [24]. For example, aligning accelerometer and gyroscope
signals as positive samples enhances modality synergy, while using cross-subject
negative samples suppresses interference caused by user variability [25]. This
”augmentation—alignment—debiasing” pipeline provides an efficient paradigm
for unsupervised feature learning.

Existing MEMS sensors, deep learning, and data fusion techniques have im-
proved recognition performance; however, deficiencies remain in dynamic in-
teractions of multimodal data, guided feature clustering and separation, and
lightweight real-time deployment. This study proposes a model that incorporates
a multi-head attention mechanism and contrastive learning to build a two-stage
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framework of “independent encoding — attention fusion — contrastive enhance-
ment.” The framework aims to address the bottlenecks of traditional methods
in cross-modal feature interaction, feature discriminability, and lightweight real-
time deployment, thereby providing a more robust solution for gesture recogni-
tion.

3 Methods

This chapter focuses on the DS-CAN framework, which employs two indepen-
dent convolutional encoders to separately process accelerometer and gyroscope
data, leveraging a multi-head attention mechanism to achieve dynamic fusion
of cross-modal features. The contrastive learning strategy is optimized to en-
hance feature discriminability while simultaneously performing supervised clas-
sification and self-supervised learning (SSL) tasks. The overall framework of the
model is illustrated in Fig. 2. This approach integrates hierarchical temporal fea-
ture learning modules, multi-head attention fusion mechanisms, and contrastive
representation alignment frameworks in sensor-based gesture recognition, con-
stituting a hierarchical technical breakthrough.

Fig. 1: Architecture diagram with an additional encoder for gyro input.

3.1 Two-stream architecture

The framework processes accelerometer and gyroscope inputs through parallel
temporal convolutional networks to capture their complementary motion fea-
tures. Each sensor data stream passes through one-dimensional convolutional
layers, performing temporal abstraction in three stages, with kernel sizes ex-
ponentially increasing across layers. The first convolutional layer extracts local
motion patterns within a 30 ms time window, capturing fundamental motion
features such as acceleration peaks or angular velocity changes. Subsequent con-
volutional layers, combined with max-pooling operations of stride 2, double the
temporal context while halving the feature map resolution, enabling the network
to hierarchically aggregate motion primitives into complete gesture representa-
tions.

For sensor modality m, the process can be mathematically expressed as:

Fm
t = ELU(BN(Wm

2 ∗MaxPool(ELU(BN(Wm
1 ∗ xm

t )))))) (1)
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Where Wm
k denotes the learnable filter at the k-th layer, BN stands for

Batch Normalization, and ELU represents the Exponential Linear Unit acti-
vation function. This design addresses two key challenges in processing sensor
data: 1) Handling variable-length gestures through adaptive receptive field ex-
pansion; 2) Achieving device orientation invariance via axis-independent feature
learning. The final global average pooling operation produces a fixed-length 64-
dimensional feature vector while preserving temporal attention weights, enabling
subsequent modules to focus on discriminative gesture phases.

The dual-stream architecture particularly preserves physical characteristics
that may be obscured in early fusion methods. For the accelerometer data, the
network learns representations sensitive to the gravity component and linear
acceleration patterns governed by Newtonian mechanics:

aobserved = atrue − gû (2)

Here, g denotes the gravitational acceleration, and u represents the device
orientation vector. In contrast, the gyroscope stream encoding captures angular
velocity dynamics described by the Euler rotation equations:

dω

dt
= I−1(τ − ω × Iω) (3)

Here, I denotes the inertia tensor, and τ denotes the applied torque. The
dual independent processing pathways allow for specialized feature extraction
dedicated to these distinct physical phenomena prior to cross-modal feature in-
teraction.

3.2 Attention-driven multimodal channels

In the field of gesture recognition, data collected from different sensors con-
tribute significantly differently to action recognition. To effectively address this
challenge, the multi-head attention mechanism has become a key strategy for op-
timizing model performance. This mechanism dynamically weights sensor data
across both the temporal and channel dimensions based on their relevance to
the target gestures. Along the temporal dimension, it precisely captures critical
time points of gesture actions; along the sensor channel dimension, it adaptively
assigns reasonable weights to different sensor data, thereby fully exploiting the
value of each sensor. Through this approach, the model can deeply analyze the
complex spatiotemporal dependencies within the sensor data, ultimately achiev-
ing improvements in both gesture recognition accuracy and robustness [26].

The fusion module employs a Transformer-based attention mechanism to
dynamically integrate features from the accelerometer and gyroscope, addressing
three key limitations of traditional fusion methods: 1) fixed fusion weights lacking
sensitivity to temporal context; 2) neglect of cross-modal correlations; and 3)
inability to handle asynchronous sensor responses. The processing procedure of
this attention mechanism consists of three stages.
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Query-Key-Value projection Features of each modality undergo learned lin-
ear transformations to generate Query (Q), Key (K), and Value (V) vectors:
representing the accelerometer.

Qm = Wm
q fm, Km = Wm

k fm, Vm = Wm
v fm (4)

Here, m ∈ {A,G} denotes the accelerometer and gyroscope modalities. The
projection matrices Wm

q , Wm
k , and Wm

v are independently learned for each
modality to preserve modality-specific information [27].

Query-Key-Value projection The attention weights between modalities are
computed using scaled dot-product similarity:

αij =
exp(Qa

i ·K
g
j/
√
d)∑t

k=1 exp(Q
a
i ·K

g
k/
√
d)

(5)

Here, d denotes the dimension of the key vectors. These weights determine the
contribution of each gyroscope feature VG

j to the accelerometer time position
i. The multi-head implementation allows the model to simultaneously attend
to different aspects of cross-modal relationships, such as temporal alignment,
magnitude correlation, and motion direction consistency.

Adaptive feature fusion The final fused representation combines the atten-
tion values from both modalities:

ffused = LayerNorm(Wo[H
a∥Hg] + bo) (6)

where ∥ denotes the concatenation operation, and Hm represents the aggre-
gated output of the heads for modality m. This structure dynamically reweights
the contribution of each sensor based on the instantaneous relevance of the sensor
data to the gesture context. For example, during rapid rotational gestures, the
attention mechanism automatically increases the weight of gyroscope features,
while during transitional phases, it emphasizes the accelerometer inputs.

Given two types of sensor data Ai and Bi, where Ai represents accelerometer
data and Bi represents gyroscope data, the combined gesture action Oi can be
expressed as:

Oi = (λAi + γBi) (7)

where λ and γ are the weights assigned to the accelerometer and gyroscope
data, respectively.

In our model, a single sensor data Ai or Bi is regarded as the key and
value, while the gesture action Oi is regarded as the query. The gesture action is
composed of a weighted fusion of the two sets of sensor data. First, the similarity
between the gesture action Oi and the single sensor data Ai is calculated using
the dot product:

a(Oi, Ai) =
Oi ·AT

i√
da

(8)
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where da is the dimension of the sensor data. Then, the similarity is passed
through a softmax function to obtain the attention weights:

α(Oi, Ai) = softmax(a(Oi, Ai)) (9)

The final weighted data is output by the attention aggregation function:

f(Oi, (Ai, Ai)) =

n∑
i=1

α(Oi, Ai)Ai (10)

The effectiveness of the attention mechanism stems from its ability to model
pairwise interactions across all temporal positions in both modalities. This is par-
ticularly important in gesture recognition, where time shifts in sensor responses
often occur due to biomechanical constraints of the human body.

3.3 Contrastive representation learning framework

The contrastive learning module enhances feature discriminability by learning
noise-invariant representations. Its basic assumption is that, for the same ac-
tion, observations from different sensors should maintain consistency in gesture
semantics [23]. This assumption extends traditional unimodal contrastive learn-
ing to multimodal interactive scenarios, aiming to effectively handle data from
different sensors. The process is formalized using a temperature-scaled normal-
ized cross-entropy (NT-Xent) loss function:

Lssl = − 1

N

N∑
i=1

log
exp(ϕ(zai , z

g
i )/τ)∑N

j=1[exp(ϕ(z
a
i , z

g
j )/τ) + exp(ϕ(zai , z

a
j )/τ)]

(11)

where ϕ(a,b) = a·b
∥a∥∥b∥ denotes the cosine similarity, and τ is a learnable

temperature parameter. The denominator includes both cross-modal and intra-
modal negative samples to prevent trivial solutions and enhance discriminative
capability.

The projection network g(·), which maps encoder features to the contrastive
space, employs a nonlinear transformation with a bottleneck architecture.

zm = g(fm) = W2ReLU(W1f
m) (12)

This design forces the network to learn a compressed representation that
retains only the most discriminative features for gesture recognition. The tem-
perature parameter τ is automatically adjusted during training to optimize the
hardness of negative samples.

∂L
∂τ

=
1

τ2

∑
i,j

pij(ϕij − E[ϕij ]) (13)

Here, pij denotes the softmax probability. This adaptive scaling prevents the
model from collapsing all features into a single point (as τ → 0) or ignoring
similarity differences (as τ → ∞). The contrastive learning objective induces
a latent space geometry in which the Euclidean distances between embedding
vectors correspond to semantic gesture similarity.
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3.4 Structural regularization

Dropout Dropout reduces overfitting by randomly deactivating neurons during
training [28]. It diminishes the network’s reliance on specific neurons, forcing the
model to learn more robust feature representations. Unlike L1/L2 regularization,
Dropout disrupts co-adaptations among neurons through random masking [29].
During training, each neuron is retained with a probability of 1− p, and during
inference, activations are scaled accordingly to alleviate overfitting and improve
generalization.

Batch Normalization BatchNorm reduces internal covariate shift by normal-
izing the mean and variance of layer inputs, stabilizing training, and accelerating
convergence [30]. It enables the use of higher learning rates, reduces sensitivity
to weight initialization, and mitigates vanishing gradient problems. In our ex-
periments, inserting BatchNorm layers significantly improved training stability.

4 Results and Analysis

4.1 Dataset

The experiments use the 6DMG, MGD, UCI-HAR, and PAMAP2 datasets. The
6DMG dataset contains 20 complex gestures collected from 28 participants, to-
taling 5600 samples; the MGD dataset includes 12 semantic gestures from 32
participants, with 5547 samples. The UCI-HAR and PAMAP2 datasets are em-
ployed to validate the generalizability for human activity and posture recogni-
tion.

4.2 Experimental Results

This study employs two data partitioning strategies: fixed-ratio stratified sam-
pling and cross-validation. The 6DMG and MGD datasets are divided into
training, validation, and test sets at a 70:15:15 ratio, while the UCI-HAR and
PAMAP2 datasets are split into training and test sets at a 70:30 ratio. Stratified
sampling is used for the former to ensure consistent class distribution across sub-
sets, whereas the latter are randomly partitioned based on participant indepen-
dence. Only 6DMG adopts 5-fold cross-validation to evaluate model robustness,
as other datasets do not use this method due to limited sample sizes or differ-
ent experimental focuses. Recognition performance is measured by accuracy and
macro F1-score, while model efficiency and real-time capability are assessed via
the number of parameters and inference time.

Performance Comparison of Gesture Recognition Tasks As shown in
Table 1, the model outperforms traditional models on the 6DMG and MGD
datasets: it achieves an accuracy of 94.29% on 6DMG, representing a 1.6% im-
provement over LSTM-CNN, with a 1.5% increase in the F1 score; on MGD, the
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accuracy and F1 score are improved by 0.8% and 1.3%, respectively. The model
has a parameter size of 3.9M (smaller than LSTM-CNN’s 5.1M) and an inference
time of only 10.3ms, meeting the requirements for real-time applications.

Table 1: Performance comparison on 6DMG dataset using 5-fold cross-validation.
Model Validation Test Param

Acc (%) F1 Acc (%) F1 (M)
Baseline CNN 92.19 0.922 91.69 0.917 2.1
LSTM 91.19 0.912 91.94 0.920 3.8
DeepConvLSTM 89.73 0.897 89.24 0.892 4.2
LSTMconvNet 93.49 0.935 92.74 0.928 5.1
Two-Stream CNN 92.34 0.922 91.79 0.918 3.4
DS-CAN 94.29 0.942 93.14 0.931 3.9

Fig. 2: confusion matrix of the 6DMG Dataset.

Typical Error Analysis of the Confusion Matrix The specific performance
of gesture classification in the confusion matrix is shown in Fig. 4. Using the
6DMG dataset as an example, the two-stream model shows notable misclassifi-
cations for gestures such as SwipeRight and CirHorClk, with accuracies of 81.6%
and 55.6%, respectively. After optimizing contrastive learning and incorporat-
ing an attention mechanism, misclassifications were significantly reduced, and
the accuracies improved to 94.29% and 92.4%, respectively. Remaining errors
are mainly concentrated in gestures with highly similar spatial trajectories and
temporal dynamics, indicating that the model still has room for improvement in
distinguishing subtle motion differences.

Generalization Ability Evaluation To evaluate the generalization capability
of our model, we conduct experiments on the UCI-HAR and PAMAP2 datasets.
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(a) Loss over Epochs (b) Accuracy over Epochs

Fig. 3: Loss Function and Accuracy on the 6DMG Dataset

(a) DS-CAN Confusion Matrix (Accu-
racy: 94.29%).

(b) Two-Stream CNN Confusion Ma-
trix (Accuracy: 92.34%).

Fig. 4: Confusion matrices comparison

The results are presented in Table 2. On the UCI-HAR dataset, our model
achieves a weighted F1 score of 0.9276, representing a 0.25% improvement over
the Two-Stream CNN model, which indicates a stronger ability to handle class
imbalance. On the more challenging PAMAP2 dataset, the accuracy improves by
3.25% and the weighted F1 score increases by 3.86%, demonstrating the model’s
robust general feature extraction capability across multimodal sensor data.

Table 2: Verification of Generalization Ability.
Model UCI - HAR PAMAP2

ACC (%) F1 ACC (%) F1

Baseline CNN 92.34 0.9223 64.25 0.6230
Two-Stream CNN 92.50 0.9249 70.47 0.6947
DS-CAN 92.77 0.9276 73.62 0.7333

Validation of Feature Learning Effectiveness We visualize the distribution
of original features and self-supervised features using t-SNE in Fig. 5. The re-
sults show that the original signal features exhibit significant class overlap in the
two-dimensional space, while the joint features learned by our approach demon-
strate clear inter-class separation and tight intra-class clustering. Quantitative
analysis further confirms this observation: an MLP classifier trained on the self-
supervised features achieves an accuracy of 92.43%, substantially outperforming
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the 82.26% accuracy obtained using original features. These results demonstrate
that contrastive learning and attention mechanisms effectively enhance feature
discriminability.

(a) The joint features learned from the
flattened raw signals.

(b) The joint features learned through
self-supervised learning.

Fig. 5: t-SNE plot of the learned joint features.

Model Efficiency Analysis Model efficiency comparisons are shown in Ta-
ble 3. Our model achieves high accuracy with only 3.9M parameters, represent-
ing a 23.5% reduction compared to the LSTM-CNN baseline. Moreover, the
inference time is reduced by 32.2% to 10.3ms. This demonstrates that our ap-
proach achieves a favorable trade-off between performance and computational
cost, making it well-suited for deployment on resource-constrained edge devices.

Table 3: Comparison of Model Parameter Sizes and Inference Times.
Model Model Size (M) Inference Time (ms)

Baseline CNN 2.1 8.5

LSTM - CNN 5.1 15.2

DS-CAN 3.9 10.3

5 Conclusion

This paper proposes an innovative gesture recognition framework that uses a
dual-channel independent encoding structure to process accelerometer and gy-
roscope data. It then employs a multi-head attention mechanism to focus on
multi-dimensional features such as time alignment, amplitude correlation, and
motion direction consistency. By introducing a temperature parameter τ , this
work extends traditional unimodal contrastive learning to multimodal data fu-
sion scenarios, effectively promoting feature association and distinction. This
approach not only improves the efficiency of multimodal feature fusion but also
addresses the lack of guidance ability in multimodal data processing. Further-
more, the model significantly enhances recognition accuracy while maintaining
a lightweight design, making it feasible for deployment on edge devices. Overall,
this work makes significant innovations in multimodal feature fusion, guidance
capability enhancement, and practical deployment, providing a viable solution
for future wearable device-based gesture recognition systems.
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